Exploring the Universe with Line-Intensity mapping

José Luis Bernal Johns Hopkins University

Institut de Ciències del Cosmos 11/01/2022

Introduction

• Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...

Introduction

- Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...
- Standard cosmological model: ΛCDM
- Excellent reproduction of the observations, but...
 - Persistent discrepancies between different cosmological probes (high-z vs low-z?): H_0 , $\sigma_8 \Omega_M^{0.5}$
 - Phenomenological model: nature of DM and DE? Primordial Universe?

Introduction

- Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...
- Standard cosmological model: ΛCDM
- Excellent reproduction of the observations, but...
- Improvement of observations, new models, new cosmological probes, ...

Probing the Universe

Growth of Structure

E. D. Kovetz

Probing the Universe

Probed Universe

Probing the Universe

Probed Universe

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

~ 1.5k hours of COMAP mapping CO intensity fluctuations

P. Breysse

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Infor Galaxy surveys: detailed distribution of brightest galaxies LoS
 Targ Intensity maps: noisy distribution of all galaxies and IGM

~ 1.5k hours of COMAP mapping CO intensity fluctuations

Targeted lines

• We have multiple lines to exploit over more than 6 orders of magnitude in frequency

Targeted lines

• We have multiple lines to exploit over more than 6 orders of magnitude in frequency

Schaan & White (2021)

Probing the Universe with LIM

• Exciting experimental landscape!

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

First obvious thing to do after detection is to measure BAO (uncalibrated standard ruler $\propto r_d H_0$)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

First obvious thing to do after detection is to measure BAO (uncalibrated standard ruler $\propto r_d H_0$)

- Extending cosmic distance ladder to z > 3
- H_0 tension
- Dark energy

•
$$H_0 \times t_U \propto \int_0^z \frac{dz'}{(1+z')E(z')}$$
 constraints

H(z) beyond the reach of galaxy surveys

Model independent H(z)reconstructed with cubic splines

Current constraints using galaxy surveys (and H_0 and r_s) and **ADDING LIM BAO**

JLB, Breysse, Kovetz (2019) Muñoz (2019) Karkare & Bird (2018)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

P(k): best for cosmo, integrals of luminosity functions

Working on their combination & covariance

VID: best for astro, integrals of clustering

Sato-Polito & JLB (2022)

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 Breysse, Kovetz, Kamionkowski (2015)

Sun, Moncelsi, Viero, Silva (2018)

• Model the effect of known interlopers in the likelihood and analyses

Lidz & Taylor (2016) Sun, Moncelsi, Viero, Silva (2018) Gong, Chen, Cooray (2020) Cheng, Chang, Bock (2020)

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 - Model the effect of known interlopers in the likelihood and analyses

Exotic radiative decays would be inadvertently detected as a line interloper!!

DM & Neutrinos

- Dark Matter:
 - Vast variety of candidates with rich phenomenology
 - Weak coupling with baryons: decaying dark matter (axion, sterile neutrinos, ...)
- Neutrinos:
 - Controlled by the electromagnetic transition moments
 - SM prediction of neutrino lifetime: $\tau_{\nu} \sim 10^{40-50}$ s ($\gg t_U$)
 - BSM physics may enhance transition moments: detection \rightarrow BSM physics!

Exotic radiative decays would be inadvertently detected as a line interloper!!

Exotic radiative decays

• Decaying dark matter: $\chi \rightarrow \gamma + \gamma$

$$\nu_{\gamma} = m_{\chi}c^{2}/2h_{P} \qquad \rho_{L}^{\chi}(\boldsymbol{x}, \boldsymbol{z}) = \rho_{\chi}(\boldsymbol{x}, \boldsymbol{z})c^{2}\Gamma_{\chi}f_{\chi}f_{\gamma\gamma}f_{esc}(1+2\mathcal{F}_{\gamma})$$

Traces directly the DM density field

 $\Theta_{\mathbf{v}}$

Exotic radiative decays

Traces directly the cosmic neutrino density field

JLB, Caputo, Villaescusa-Navarro, Kamionkowski (2021)

Effect in power spectrum

• Confusion in redshift → projection effects → **extra anisotropy**

• Model it similar to AP effect: $k_i^{true} \equiv k_i^{infer}/q_i$

$$q_{\parallel} = \frac{(1+z_X)/H(z_X)}{(1+z_l)/H(z_l)} \qquad \qquad q_{\perp} = \frac{D_M(z_X)}{D_M(z_l)}$$

Effect in power spectrum

•
$$P_{tot} = P_l + P_X;$$
 $k_i^{true} \equiv k_i^{infer}/q_i$

JLB, Caputo, Kamionkowski (2021)

Effect in VID

• Each voxel receives contributions from both emissions:

 $T_{tot} = T_l + T_{noise}$

$$\mathcal{P}_{tot+X}(T) = \left((\mathcal{P}_l * \mathcal{P}_X) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_X = \mathcal{P}_{\widetilde{\rho}} / \langle T_X \rangle$$

- $\mathcal{P}_{\tilde{\rho}}$: PDF of normalized densities. Obtained from simulations
- We provide the first analytic fit to $\mathcal{P}_{\widetilde{\rho}_{\nu}}$, using Quijote simulations and symbolic regression

Effect in VID

• Each voxel receives contributions from both emissions:

$$\mathcal{P}_{tot+\chi}(T) = \left(\left(\mathcal{P}_{l} * \mathcal{P}_{\chi} \right) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_{\chi} = \mathcal{P}_{\widetilde{\rho}} / \langle T_{\chi} \rangle$$

JLB, Caputo, Kamionkowski (2021)

No noise contribution included here!

Sensitivity in axion context

JLB, Caputo, Kamionkowski (2021)

Sensitivities to neutrino decay

Challenges & improvements

- Challenges:
 - Astrophysical uncertainties: marginalization, break degeneracies
 - Other contaminants: loss of information, potential biases
 - Line broadening (currently testing BAO robustness against this)
- Reasons to be optimistic:
 - Many pathfinders and experiments in the pipeline (and theory efforts too!)
 - Other summary statistics
 - BAO: clean measurement
 - Exotic decays:
 - Extensible to other interloper-treatement, summary statistics, etc
 - Multiprobe with galaxy clustering and weak lensing
 - New info and checks through cross correlations

Conclusions

- LIM holds a great protential for cosmology:
 - DM nature through small scales clustering (cosmic dawn)
 - Early Universe: Primordial non-Gaussianity, CIPs, ...
 - Neutrino cosmology
- LIM BAO will constrain dark energy at z<10
- Exotic decays: adapting techniques to identify and model interlopers is a cheap and powerful strategy.
 - DM: HETDEX & SPHEREx will improve current constraints (1-10 eV) and AtLAST will be similar to IAXO (0.01-0.1 eV)
 - Neutrinos: Improve CMB forecasts and competitive with best constraints

Back up slides

Signal strongly depends on astrophysical processes

21 CM (pre-reio)

CO, CII, OIII, H α , H β ,... 21cm (post-reio)

Continuum

Lyα

Adapted from P. Breysse, Background: Sci. Am.

Adapted from Schaan & White 2021

LIM BAO

Current and coming constraints using galaxy surveys

Constraining the expansion history

JLB+2019b

Model independent H(z)reconstructed with cubic splines

Current constraints using galaxy surveys (and H_0 and r_s)

Constraining the expansion history

JLB+2019b

Current constraints using galaxy surveys (and H_0 and r_s)

independent H(z)reconstructed with cubic splines

LIM BAO

JLB+2019b

LIM BAO

JLB+2019b

LIM BAO

JLB+2019b

LIM BAO

H(z) beyond the reach of galaxy surveys

Current constraints using galaxy surveys (and H_0 and r_s) and **ADDING LIM BAO**

JLB+2019a JLB+2019b