

José Luis Bernal Max Planck Institute for Astrophysics

OPINAS seminar - Max Planck Institute for Extraterrestrial Physics 28/11/2022

• Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...

- Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...
- Standard cosmological model: ΛCDM
- Excellent reproduction of the observations, but...
 - Persistent discrepancies between different cosmological probes (high-z vs low-z?): H_0 , $\sigma_8 \Omega_M^{0.5}$
 - Phenomenological model: nature of DM and DE? Primordial Universe?

- Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...
- Standard cosmological model: ΛCDM
- Excellent reproduction of the observations, but...
- First stars, reionization, galaxy formation and evolution, ...

- Precision cosmology: CMB, clustering & BAO, lensing, SNeIa, GWs, ...
- Standard cosmological model: ΛCDM
- Excellent reproduction of the observations, but...
- First stars, reionization, galaxy formation and evolution, ...
- Improvement of observations, new models, new probes/observables, ...

Outline

- What is LIM?
- Potential and oportunities
- Optimizing information return
- Observational challenges
- Novel science cases

*If interested, check Bernal & Kovetz 2022, LIM Theory Review

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

- $1 \deg^2 \text{ at } z = 5, \Delta z = 0.2$
- All haloes

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

- $1 \deg^2 \text{ at } z = 5, \Delta z = 0.2$
- All haloes
- Only $M_* > 10^{9.5} M_{\odot}$

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- LIM: Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

- Intensity fluctuations:
 - trace matter density fluctuations
 - Depend on line luminosity -> extragalactic astrophysics
- For cosmology: Noisy map of *all* galaxies and IGM (vs detailed map of brightest)
- For astrophysics: Aggregate of *all* emitters and diffuse emission

- Intensity fluctuations:
 - trace matter density fluctuations
 - Depend on line luminosity -> extragalactic astrophysics
- For cosmology: Noisy map of *all* galaxies and IGM (vs detailed map of brightest)
- For astrophysics: Aggregate of *all* emitters and diffuse emission

Three main features that make LIM unique:

- 1. Capture faint and diffuse sources
- 2. Access beyond the reach of galaxy surveys
- 3. Quickly map large three-dimensional volumes

Intrinsically multitracer

 $\Phi(L_1, L_2, ...)$: combine with continuum, and statistically probe all the SED

Intrinsically multitracer

 $\Phi(L_1, L_2, ...)$: combine with continuum, and statistically probe all the SED

Leaving no photon behind

Probes the faint end of the LF (equiv. light end of the HMF)

Filling the gaps in cosmic history

Filling the gaps in cosmic history

Filling the gaps in cosmic history

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

Bernal & Kovetz (2022)

COMAP-like but for 200 deg²

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

LIM BAO

Current and coming constraints using galaxy surveys

Bernal +(2019)

LIM BAO

Current and coming constraints using galaxy surveys + Star-Formation-related LIM BAO

Bernal +(2019)

Probing large volumes

$$A_{\perp} = D_M^2 \Omega_{field} \qquad \qquad L_{\parallel} = \frac{c \Delta \nu (1+z)}{H \nu_{obs}}$$

- At z = 3, $D_M \sim 6.5$ Gpc, $H \sim 300$ km/s/Mpc • $\frac{V}{\Omega_{field} \Delta v / v_{obs}} = 40$ Gpc³/sr
- Great statistics for small fields, access to ultra large scales

Probing large volumes

$$A_{\perp} = D_M^2 \Omega_{field} \qquad \qquad L_{\parallel} = \frac{c \Delta \nu (1+z)}{H \nu_{obs}}$$

- At z = 3, $D_M \sim 6.5$ Gpc, $H \sim 300$ km/s/Mpc
- $\frac{V}{\Omega_{field}\Delta\nu/\nu_{obs}} = 40 \,\mathrm{Gpc^3/sr}$
- Great statistics for small fields, access to ultra large scales
- Measure f_{NL} , through k^{-2} dependence on the P(k)

Bernal+(2019), Moradinezhad Dizgah+(2018, 2019), Liu & Breysse (2021), Chen & Pullen (2022), ...

• Very limited by systematics and foregrounds,

cross correlations help

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

• VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(T)$)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} = \langle \delta T \delta T^* \rangle \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

P(k): best for cosmo, integrals of luminosity functions

VID: best for astro, integrals of clustering

Combining VID and P(k)

Ihle+(2019)

Combining VID and P(k)

Correlation coefficient

$$c_{ij} = \frac{\operatorname{Cov}[\mathcal{B}_i, P(k_j)]}{\sigma_{\mathcal{B}_i} \sigma_{P(k_j)}}$$

- Analytic covariance computed using: $\mathcal{P}(I) \rightarrow \mathcal{P}(I, \delta(\mathbf{x}))$
- Proportional to collapsed bispectrum
- Example for COMAP Y5: CO(1-0), z ~ 2.4-3.4
- Definitely important to take into account very soon

Contamination of intensity maps

- Continuous foregrounds:
 - Uncorrelated (galactic, not that bad for higher freq)
 - Correlated (CIB, blurring of radial info, loss of long line-of-sight modes)
 - Combine with galaxy surveys Switzer+(2015), Switzer (2017), Switzer+(2018)
 - Neural networks Pfeffer+(2019), Moriwaki+(2021)

Contamination of intensity maps

- Continuous foregrounds:
 - Uncorrelated (galactic, not that bad for higher freq)
 - Correlated (CIB, blurring of radial info, loss of long line-of-sight modes)
 - Combine with galaxy surveys Switzer+(2015), Switzer (2017), Switzer+(2018)
 - Neural networks Pfeffer+(2019), Moriwaki+(2021)
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 Breysse+(2015), Sun+(2018)
 - Model the effect of known interlopers in the likelihood and analyses

Lidz & Taylor (2016), Sun+(2018), Gong+(2020), Cheng+(2020)

Sato-Polito, Kokron, Bernal (in prep)

Skyline code structure

Adapted from a slide by G. Sato-Polito

Power spectra and correlation coefficients

- No specific survey, trying to get uniform comparison (S/N = 5 at k = 0.1, 2' resolution, R=700, z = 3)
- Crosscorrelation coefficient < 1 because of shot noise and non linear biases
- Check loss of information due to non linearities

Which halos does LIM measure?

- Check if LIM actually is sensitive to the faint emitters
- CO(1-0), z ~ 3

13.0

20

2.0

1.5

All

Δ*T*=-2.0μK

 ΔT =-0.0 μ K

 $\Delta T = 4.6 \mu K$

 $\Delta T = 13.8 \mu K$

Line interlopers

- - J = 4 at z = 0.46
 - J = 5 at z = 0.82
 - J = 6 at z = 1.18
- J = 7 at z = 1.55
- Brighter red, higher J

Galactic foregrounds

Cross-correlating to clean and extract info

- Currently small experiments and pathfinders (except HI)
- Multi-tracer by definition
- Great overlap with galaxy surveys and CMB
- Cross correlations leave foregrounds and interlopers out (contribute to the noise!)

• Great future: joint analyses, bigger z range, wider surveys, etc.

Bernal & Kovetz (2022)

Sato-Polito, Kokron, Bernal (in prep)

SkyLine and cross correlations

- SkyLine: Mock LIM lightcones (almost any line, contaminants, etc), including also LRGs + ELGs
- Coherent with MDPL2 Synthetic Skies: CMB secondaries and galaxy lensing

• First mocks that self-consistently models line-intensity, galaxies and CMB secondaries

Cross-correlating to clean and extract info

- Currently small experiments and pathfinders (except HI)
- Multi-tracer by definition
- Great overlap with galaxy surveys and CMB
- Cross correlations leave foregrounds and interlopers out (contribute to the noise!)

- Great future: joint analyses, bigger z range, wider surveys, etc.
- 21cm x LRGs ; z = [0.4,1.4]
- Lya x ELGs ; z = [2.2,3.2]
- 400 deg2

Sato-Polito, Kokron, Bernal (in prep)

SkyLine and cross correlations

- SkyLine: Mock LIM lightcones (almost any line, contaminants, etc), including also LRGs + ELGs
- Coherent with MDPL2 Synthetic Skies: CMB secondaries and galaxy lensing

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 - Model the effect of known interlopers in the likelihood and analyses

Exotic radiative decays would be inadvertently detected as a line interloper!!

DM & Neutrinos

- Dark Matter:
 - Vast variety of candidates with rich phenomenology
 - Weak coupling with baryons: decaying dark matter (axion, sterile neutrinos, ...)
 - Decays trace directly the matter distribution

$$\chi \rightarrow \gamma + \gamma$$

$$v_{\gamma} = m_{\chi}c^2/2h_P$$

DM & Neutrinos

- Neutrinos:
 - Controlled by the electromagnetic transition moments
 - SM prediction of neutrino lifetime: $\tau_{\nu} \sim 10^{40-50}$ s ($\gg t_U$)
 - BSM physics may enhance transition moments: detection \rightarrow BSM physics!
 - Traces directly the cosmic neutrino density field

Sensitivity in axion context

JLB, Caputo, Kamionkowski (2021)

Sensitivities to neutrino decay

Challenges & improvements

- Challenges:
 - Astrophysical uncertainties: marginalization, break degeneracies
 - Other contaminants: loss of information, potential biases
 - Line broadening (currently testing BAO robustness against this)
- Reasons to be optimistic:
 - Many pathfinders and experiments in the pipeline (and theory efforts too!)
 - Other summary statistics
 - BAO: clean measurement
 - Exotic decays:
 - Extensible to other interloper-treatement, summary statistics, etc
 - Multiprobe with galaxy clustering and weak lensing
 - New info and checks through cross correlations

Conclusions

- LIM has the potential to become a key pillar for cosmology and astrophysics
 - 1. Capture faint and diffuse sources
 - 2. Access beyond the reach of galaxy surveys
 - 3. Quickly map large three-dimensional volumes
- Very non Gaussian maps: P(k) + VID (+ ...); use of simulations also required
 - SkyLine: playground to test methods and understand and maximize LIM's potential
- Intrinsic multi-tracer nature + lots of overlap and synergies with other observables
- Window to new regimes, new observational methods: new avenue for probing new physics
- Lots to do! come talk to me if you're curious about new science cases and beyond LCDM searches!

Back up slides

Constraining the expansion history

Model independent H(z)reconstructed with cubic splines

Current constraints using galaxy surveys (and H_0 and r_s)

Bernal +(2019)

Constraining the expansion history

Current constraints using galaxy surveys (and H_0 and r_s)

independent H(z)reconstructed with cubic splines

H(z) beyond the reach of galaxy surveys

Current constraints using galaxy surveys (and H_0 and r_s) and **ADDING LIM BAO**

Model independent H(z)reconstructed with cubic splines

High-z vs low-z

Done using MABEL

• Focus on the anisotropic power spectrum:

- Amplitude determined by LF and bias
- Signal limited by resolution at small scales and by size of volume probed at large scales (modeled with window functions)
- Use Legendre multipoles to explore anisotropy!

BAO Cosmology

User's guide:JLB+2019a

- Focus on the anisotropic power spectrum:
- Alcock-Paczynski effect: $k_{\parallel}^{meas} = k_{\parallel}^{true} \alpha_{\parallel};$ $k_{\perp}^{meas} = k_{\perp}^{true} \alpha_{\perp}$ $\downarrow_{\alpha_{\parallel}} = \frac{(H(z)r_s)^{fid}}{H(z)r_s}$ $\downarrow_{\alpha_{\perp}} = \frac{D_A(z)/r_s}{(D_A(z)/r_s)^{fid}}$

BAO feature helps to measure the AP effect

User's guide:JLB+2019a

- Focus on the anisotropic power spectrum:
- Alcock-Paczynski effect: $k_{\parallel}^{meas} = k_{\parallel}^{true} \alpha_{\parallel}$; $k_{\perp}^{meas} = k_{\perp}^{true} \alpha_{\perp}$

• Breaking degeneracies:
$$P(k,\mu,z) = \left(\frac{\langle T \rangle b\sigma_8 + \langle T \rangle f\sigma_8 \mu^2}{1 + 0.5(k\mu\sigma_{FoG})^2}\right)^2 \frac{P_m(k)}{\sigma_8^2} + P_{shot}(z)$$

- Focus on the anisotropic power spectrum:
- Alcock-Paczynski effect: $k_{\parallel}^{meas} = k_{\parallel}^{true} \alpha_{\parallel}; \qquad k_{\perp}^{meas} = k_{\perp}^{true} \alpha_{\perp}$

• Breaking degeneracies:
$$P(k, \mu, z) = \left(\frac{\langle T \rangle b\sigma_8 + \langle T \rangle f\sigma_8 \mu^2}{1 + 0.5(k\mu\sigma_{FoG})^2}\right)^2 \frac{P_m(k)}{\sigma_8^2} + P_{shot}(z)$$

• Include experimental window function: $\tilde{P}(k, \mu, z) = W(k, \mu, z)P(k, \mu, z)$

- Focus on the anisotropic power spectrum:
- Alcock-Paczynski effect: $k_{\parallel}^{meas} = k_{\parallel}^{true} \alpha_{\parallel}$; $k_{\perp}^{meas} = k_{\perp}^{true} \alpha_{\perp}$

• Breaking degeneracies:
$$P(k,\mu,z) = \left(\frac{\langle T \rangle b\sigma_8 + \langle T \rangle f\sigma_8 \mu^2}{1 + 0.5(k\mu\sigma_{FoG})^2}\right)^2 \frac{P_m(k)}{\sigma_8^2} + P_{shot}(z)$$

- Include experimental window function: $\tilde{P}(k, \mu, z) = W(k, \mu, z)P(k, \mu, z)$
- Legendre multipoles: up to the hexadecapole! $\alpha_{\parallel}, \alpha_{\perp}, \langle T \rangle f \sigma_8$

$$\tilde{P}_{\ell}(k^{meas},z) = \frac{H(z)}{H^{fid}(z)} \left(\frac{D_A^{fid}(z)}{D_A(z)}\right)^2 \frac{2\ell+1}{2} \int_{-1}^{1} d\mu^{meas} \tilde{P}(k^{true},\mu^{true},z) \mathcal{L}_{\ell}(\mu^{meas})$$

$$User's guide: JLB+2019a$$

BAO cosmology!

Using LIM for local PNG: P(k)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$
 Karkare+ (2022)

• Assumes:

- Observations in 80-310 GHz
- R =300
- Noise from interlopers
- Excellent observing sites (only instrument noise)
- Autopower spectrum: get to improve with x-corr.
- Optimal sky coverage
- See also Bernal+(2019), Moradinezhad Dizgah+(2018, 2019), Liu & Breysse (2021), Chen & Pullen (2022), ...

Assuming known b_{ϕ} , see Alex's talk

Using LIM for local PNG: P(k)

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$
 Karkare+ (2022)

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - More challenges for PNG from B(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro

Assuming known b_{ϕ} , see Alex's talk

Using LIM for local PNG: kSZ tomography

- $\langle T\delta\delta \rangle$: LIM as tracer of LSS
- v_r reconstruction
- multitracer LIM x velocity
- Higher z (bigger volume)

Sato-Polito, Bernal+ (2021)

Sabla, Sato-Polito, Bernal+ (in prep)

Using LIM for local PNG: VID

- Histogram: estimator for PDF -> given an astro model $L(M_h)$, sensitive to $\mathcal{P}(N) \rightarrow HMF$
- HMF sensitive to PNG: $\left(\frac{dn}{dM}\right)_{NG} = \left(\frac{dn}{dM}\right)_{G} \left(1 + \Delta_{HMF}(\kappa_3, \nu)\right)$
- Analytic covariance to combine with P(k) Sato-Polito & Bernal+ (2022)

PRELIMINARY

SPHEREX, $H\alpha$, z = 3.2

Effect in power spectrum

• Confusion in redshift → projection effects → **extra anisotropy**

• Model it similar to AP effect: $k_i^{true} \equiv k_i^{infer}/q_i$

$$q_{\parallel} = \frac{(1+z_X)/H(z_X)}{(1+z_l)/H(z_l)} \qquad \qquad q_{\perp} = \frac{D_M(z_X)}{D_M(z_l)}$$

Effect in power spectrum

•
$$P_{tot} = P_l + P_X;$$
 $k_i^{true} \equiv k_i^{infer}/q_i$

Effect in VID

• Each voxel receives contributions from both emissions:

 $T_{tot} = T_l + T_{noise}$

$$\mathcal{P}_{tot+X}(T) = \left((\mathcal{P}_l * \mathcal{P}_X) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_X = \mathcal{P}_{\widetilde{\rho}} / \langle T_X \rangle$$

- $\mathcal{P}_{\tilde{\rho}}$: PDF of normalized densities. Obtained from simulations
- We provide the first analytic fit to $\mathcal{P}_{\widetilde{\rho}_{\nu}}$, using Quijote simulations and symbolic regression

Effect in VID

• Each voxel receives contributions from both emissions:

$$\mathcal{P}_{tot+\chi}(T) = \left(\left(\mathcal{P}_{l} * \mathcal{P}_{\chi} \right) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_{\chi} = \mathcal{P}_{\widetilde{\rho}} / \langle T_{\chi} \rangle$$

No noise contribution included here!

Skyline code structure

Figure 1. The scheme of box rotation used in generating lightcones from the MDPL2 simulation box. Each individual grid represents a 1 h^{-1} Gpc box.

Omori in prep.